quadrature encoding - ترجمة إلى العربية
Diclib.com
قاموس ChatGPT
أدخل كلمة أو عبارة بأي لغة 👆
اللغة:

ترجمة وتحليل الكلمات عن طريق الذكاء الاصطناعي ChatGPT

في هذه الصفحة يمكنك الحصول على تحليل مفصل لكلمة أو عبارة باستخدام أفضل تقنيات الذكاء الاصطناعي المتوفرة اليوم:

  • كيف يتم استخدام الكلمة في اللغة
  • تردد الكلمة
  • ما إذا كانت الكلمة تستخدم في كثير من الأحيان في اللغة المنطوقة أو المكتوبة
  • خيارات الترجمة إلى الروسية أو الإسبانية، على التوالي
  • أمثلة على استخدام الكلمة (عدة عبارات مع الترجمة)
  • أصل الكلمة

quadrature encoding - ترجمة إلى العربية

NUMERICAL INTEGRATION
Gaussian integration; Gaussian numerical integration; Gauss quadrature; Gauss legendre quadrature; Gaussian Quadrature; Gauss–Lobatto quadrature; Gauss-Lobatto quadrature
  • 2}} – 3''x'' + 3}}), the 2-point Gaussian quadrature rule even returns an exact result.
  • ''n'' {{=}} 5)}}

quadrature encoding      
كود السعة التعامدية .
character encoding         
  • Hollerith 80-column punch card with EBCDIC character set
  • 365x365px
SYSTEM USING A PRESCRIBED SET OF DIGITAL VALUES TO REPRESENT TEXTUAL CHARACTERS
Character set; Text encoding; International character set; Character code; Charset; Text encodings; Character encodings; Character sets; Legacy encoding; Character Set; Codeset; Legacy character set; Coded character set; Charsets; Coded Character Set; Character repertoire; Character encoding scheme; Character encoding form; Code character; Coded character; Code unit; Symbol set; Draft:List of computer character encodings; Character encoding system; Character coding system; Character coding; IBM Character Data Representation Architecture; Character Data Representation Architecture; IBM CDRA; CDRA; File encoding; File encodings; Convmv; Code set; Unicode encoding model; Character encoding translation; History of character encoding
تشفير الرموز
character set         
  • Hollerith 80-column punch card with EBCDIC character set
  • 365x365px
SYSTEM USING A PRESCRIBED SET OF DIGITAL VALUES TO REPRESENT TEXTUAL CHARACTERS
Character set; Text encoding; International character set; Character code; Charset; Text encodings; Character encodings; Character sets; Legacy encoding; Character Set; Codeset; Legacy character set; Coded character set; Charsets; Coded Character Set; Character repertoire; Character encoding scheme; Character encoding form; Code character; Coded character; Code unit; Symbol set; Draft:List of computer character encodings; Character encoding system; Character coding system; Character coding; IBM Character Data Representation Architecture; Character Data Representation Architecture; IBM CDRA; CDRA; File encoding; File encodings; Convmv; Code set; Unicode encoding model; Character encoding translation; History of character encoding
حزمة حروف .

ويكيبيديا

Gaussian quadrature

In numerical analysis, a quadrature rule is an approximation of the definite integral of a function, usually stated as a weighted sum of function values at specified points within the domain of integration. (See numerical integration for more on quadrature rules.) An n-point Gaussian quadrature rule, named after Carl Friedrich Gauss, is a quadrature rule constructed to yield an exact result for polynomials of degree 2n − 1 or less by a suitable choice of the nodes xi and weights wi for i = 1, …, n. The modern formulation using orthogonal polynomials was developed by Carl Gustav Jacobi in 1826. The most common domain of integration for such a rule is taken as [−1, 1], so the rule is stated as

1 1 f ( x ) d x i = 1 n w i f ( x i ) , {\displaystyle \int _{-1}^{1}f(x)\,dx\approx \sum _{i=1}^{n}w_{i}f(x_{i}),}

which is exact for polynomials of degree 2n − 1 or less. This exact rule is known as the Gauss-Legendre quadrature rule. The quadrature rule will only be an accurate approximation to the integral above if f (x) is well-approximated by a polynomial of degree 2n − 1 or less on [−1, 1].

The Gauss-Legendre quadrature rule is not typically used for integrable functions with endpoint singularities. Instead, if the integrand can be written as

f ( x ) = ( 1 x ) α ( 1 + x ) β g ( x ) , α , β > 1 , {\displaystyle f(x)=\left(1-x\right)^{\alpha }\left(1+x\right)^{\beta }g(x),\quad \alpha ,\beta >-1,}

where g(x) is well-approximated by a low-degree polynomial, then alternative nodes xi' and weights wi' will usually give more accurate quadrature rules. These are known as Gauss-Jacobi quadrature rules, i.e.,

1 1 f ( x ) d x = 1 1 ( 1 x ) α ( 1 + x ) β g ( x ) d x i = 1 n w i g ( x i ) . {\displaystyle \int _{-1}^{1}f(x)\,dx=\int _{-1}^{1}\left(1-x\right)^{\alpha }\left(1+x\right)^{\beta }g(x)\,dx\approx \sum _{i=1}^{n}w_{i}'g\left(x_{i}'\right).}

Common weights include 1 1 x 2 {\textstyle {\frac {1}{\sqrt {1-x^{2}}}}} (Chebyshev–Gauss) and 1 x 2 {\displaystyle {\sqrt {1-x^{2}}}} . One may also want to integrate over semi-infinite (Gauss-Laguerre quadrature) and infinite intervals (Gauss–Hermite quadrature).

It can be shown (see Press, et al., or Stoer and Bulirsch) that the quadrature nodes xi are the roots of a polynomial belonging to a class of orthogonal polynomials (the class orthogonal with respect to a weighted inner-product). This is a key observation for computing Gauss quadrature nodes and weights.